INTEGRACIÓN INNOVADORA DE REFRIGERACIÓN RADIATIVA DIARIA Y CALEFACCIÓN SOLAR

Autores/as

  • Dr. R. Vilà Universitat de Lleida
  • Sr. J. Monterrubio Universitat de Lleida
  • Sr. J. Cofré-Toledo Universitat de Lleida
  • Dr. C. Solé Universitat de Lleida
  • Pr. A. Castell Universitat de Lleida
  • Dr. I. Martorell Universitat de Lleida
  • Dr. L. Rincón Universitat de Lleida
  • Pr. M. Medrano Universitat de Lleida

DOI:

https://doi.org/10.21134/5y4trp12

Palabras clave:

Refrigeración radiativa diaria, energía solar, frío renovable, calor renovable

Resumen

Esta investigación presenta el dispositivo Emisor y Colector Radiativo Adaptativo (ad-RCE), una evolución del Emisor y Colector Radiativo (RCE). El RCE ha demostrado la doble capacidad de producir agua caliente mediante captación solar durante el día y agua fría por debajo de la temperatura ambiente mediante refrigeración radiativa durante la noche. Con el desarrollo de nuevos materiales, ahora es posible lograr enfriamiento radiativo incluso durante el día. Para aumentar la producción de frío, el ad-RCE integra enfriamiento radiativo diurno (DRC) con enfriamiento radiativo nocturno (NRC) y calefacción solar (SH) en un sistema activo. El ad-RCE mejora el RCE anterior ya que está diseñado para ajustar dinámicamente su producción de calor y frío en respuesta a la demanda diaria. Al incorporar un mecanismo giratorio y nuevos materiales DRC, el ad-RCE permite la transición entre las funciones de enfriamiento radiativo y calentamiento solar al tiempo que extiende el período de operación de enfriamiento, lo que representa un enfoque innovador para aprovechar fuentes de energía renovables tanto para fines de calefacción como de enfriamiento. Esta evolución del RCE al ad-RCE amplía las capacidades del dispositivo al aumentar la producción de enfriamiento y al mismo tiempo reducir los requisitos de superficie del ad-RCE. Esto hace que el ad-RCE sea más adecuado para la producción de energía en edificios y aplicaciones industriales. El documento proporciona un análisis exhaustivo del ad-RCE, destacando sus beneficios y mejoras en comparación con su predecesor, el RCE.

Referencias

Buildings - Energy System, IEA (n.d.). https://www.iea.org/energy-system/buildings (accessed April 11, 2024).

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, (2009). https://doi.org/10.1007/978-1-137-54507-7_21.

Directive (EU) 2018/ of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, (n.d.) 17.

Council of the European Union. General Secretariat of the Council, Project Europe 2030 : challenges and opportunities : a report to the European Council by the reflection group on the future of the EU 2030, Publications Office, LU, 2010. https://data.europa.eu/doi/10.2860/9573 (accessed April 11, 2024).

S. Vall, A. Castell, Radiative cooling as low-grade energy source: A literature review, Renewable and Sustainable Energy Reviews 77 (2017) 803–820. https://doi.org/10.1016/j.rser.2017.04.010.

M.M. Hossain, M. Gu, Radiative cooling: Principles, progress, and potentials, Advanced Science 3 (2016) 1–10. https://doi.org/10.1002/advs.201500360.

S. Vall, A. Castell, M. Medrano, Energy Savings Potential of a Novel Radiative Cooling and Solar Thermal Collection Concept in Buildings for Various World Climates, Energy Technol. 6 (2018) 2200–2209. https://doi.org/10.1002/ente.201800164.

M. Matsuta, S. Terada, H. Ito, Solar Heating and radiative cooling using a solar collector-sky radiator with a spectrally selective surface, Solar Energy 39 (1987) 183–186.

M. Hu, G. Pei, Q. Wang, J. Li, Y. Wang, J. Ji, Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system, Applied Energy 179 (2016) 899–908. https://doi.org/10.1016/j.apenergy.2016.07.066.

S. Vall, A. Castell, M. Medrano, Energy Savings Potential of a Novel Radiative Cooling and Solar Thermal Collection Concept in Buildings for Various World Climates, Energy Technol. 6 (2018) 2200–2209. https://doi.org/10.1002/ente.201800164.

R. Vilà, L. Rincón, M. Medrano, A. Castell, Potential Maps for Combined Nocturnal Radiative Cooling and Diurnal Solar Heating Applications. Cases of Spain, Switzerland, Germany and Sweden., in: Proceedings of the 6th International Conference on Polygeneration, International Conference on Poligeneration, Zaragoza (Spain), 2021.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, The radiative cooling of selective surfaces, Solar Energy 17 (1975) 83–89. https://doi.org/10.1016/0038-092X(75)90062-6.

M.A. Kecebas, M.P. Menguc, A. Kosar, K. Sendur, Passive radiative cooling design with broadband optical thin-film filters, Journal of Quantitative Spectroscopy and Radiative Transfer 198 (2017) 179–186. https://doi.org/10.1016/j.jqsrt.2017.03.046.

J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling, Science 362 (2018) 315–319. https://doi.org/10.1126/science.aat9513.

J.-W. Cho, T.-I. Lee, D.-S. Kim, K.-H. Park, Y.-S. Kim, S.-K. Kim, Visible to near-infrared thermal radiation from nanostructured tungsten anntennas, J. Opt. 20 (2018) 09LT01. https://doi.org/10.1088/2040-8986/aad708.

A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature 515 (2014) 540–544. https://doi.org/10.1038/nature13883.

B. Ko, D. Lee, T. Badloe, J. Rho, Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling, Energies 12 (2018) 89. https://doi.org/10.3390/en12010089.

A. Aili, X. Yin, R. Yang, Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand, Atmosphere 12 (2021) 1379. https://doi.org/10.3390/atmos12111379.

R. Vilà, M. Medrano, A. Castell, Mapping Nighttime and All-Day Radiative Cooling Potential in Europe and the Influence of Solar Reflectivity, Atmosphere 12 (2021) 1119. https://doi.org/10.3390/atmos12091119.

R. Vilà, M. Medrano, A. Castell, Climate change influences in the determination of the maximum power potential of radiative cooling. Evolution and seasonal study in Europe, Renewable Energy 212 (2023) 500–513. https://doi.org/10.1016/j.renene.2023.05.083.

K. Chang, Q. Zhang, Modeling of downward longwave radiation and radiative cooling potential in China, Journal of Renewable and Sustainable Energy 11 (2019) 066501. https://doi.org/10.1063/1.5117319.

M. Li, H.B. Peterson, C.F.M. Coimbra, Radiative cooling resource maps for the contiguous United States, Journal of Renewable and Sustainable Energy 11 (2019) 036501. https://doi.org/10.1063/1.5094510.

A.S. Farooq, K. Alkaabi, S.B. Hdhaiba, Exploring radiative sky cooling resource map and the impact of meteorological conditions on radiative emitters. A perspective of GCC countries, Energy Reports 10 (2023) 473–483. https://doi.org/10.1016/j.egyr.2023.06.054.

A.H.H. Ali, H. Saito, I.M.S. Taha, K. Kishinami, I.M. Ismail, Effect of aging, thickness and color on both the radiative properties of polyethylene films and performance of the nocturnal cooling unit, Energy Conversion and Management 39 (1998) 87–93. https://doi.org/10.1016/S0196-8904(96)00174-4.

I. Martorell, J. Camarasa, R. Vilà, C. Solé, A. Castell, RCE as a device to produce heating and cooling. Transmittance and aging study for cover materials suitable for radiative cooling, in: Proceedings of the 6th International Conference on Polygeneration, International Conference on Poligeneration, Zaragoza (Spain), 2021.

R. Vilà, I. Martorell, M. Medrano, A. Castell, Adaptive covers for combined radiative cooling and solar heating. A review of existing technology and materials, Solar Energy Materials and Solar Cells 230 (2021) 111275. https://doi.org/10.1016/j.solmat.2021.111275.

E. Erell, Y. Etzion, Radiative cooling of buildings with flat-plate solar collectors, Building and Environment 35 (2000) 297–305. https://doi.org/10.1016/S0360-1323(99)00019-0.

Descargas

Publicado

2024-10-22