SISTEMA DE ENFRIAMIENTO EVAPORATIVO INDIRECTO FABRICADO CON IMPRESIÓN 3D Y RESINA CERÁMICA

Autores/as

  • Manuel Ruiz de Adana Santiago Universidad de Córdoba Q1418001B
  • Francisco Comino
  • Pablo E. Romero
  • José A. Martinez
  • Jesús Castillo-González
  • Francisco J. Navas-Martos

DOI:

https://doi.org/10.21134/9n4f0761

Palabras clave:

enfriamiento de aire, intercambiador de calor y masa, fabricación aditiva, resina cerámica

Resumen

Los sistemas de enfriamiento evaporativo indirecto presentan una alternativa prometedora a los métodos convencionales de enfriamiento basados en compresión de vapor. Este estudio se centró en el diseño y la fabricación de un sistema de enfriamiento evaporativo de punto de rocío utilizando resina cerámica y la técnica de fabricación aditiva DLP (Digital Light Processing). A diferencia de los diseños tradicionales con canales rectangulares, este sistema emplea un diseño tubular. Se realizaron pruebas experimentales en condiciones de laboratorio, variando la temperatura del aire de entrada de 30 °C a 45 °C y el caudal de aire de 12 m³/h a 30 m³/h. Los resultados mostraron una significativa reducción de la temperatura del aire de hasta 20 °C y una alta eficiencia energética de enfriamiento (EER) de hasta 11, especialmente a la temperatura máxima de entrada y al caudal mínimo de aire. Estos hallazgos indican que los enfriadores evaporativos indirectos compactos pueden lograr un enfriamiento eficaz con bajo consumo de energía y un impacto ambiental reducido.

Referencias

European Parliament, European Directive 2010/31/EU on the Energy Performance of Buildings, 2010. https://doi.org/doi:10.3000/17252555.L_2010.153.eng.

P. Sun, J.Y. Wu, R.Z. Wang, Y.X. Xu, Analysis of indoor environmental conditions and heat pump energy supply systems in indoor swimming pools, Energy Build 43 (2011) 1071–1080. https://doi.org/10.1016/j.enbuild.2010.08.004.

B. Porumb, P. Ungureşan, L.F. Tutunaru, A. Şerban, M. BǍlan, A Review of Indirect Evaporative Cooling Operating Conditions and Performances, Energy Procedia 85 (2016) 452–460. https://doi.org/10.1016/j.egypro.2015.12.226.

B. Porumb, P. Ungureşan, L.F. Tutunaru, A. Şerban, M. BǍlan, A Review of Indirect Evaporative Cooling Technology, Energy Procedia 85 (2016) 461–471. https://doi.org/10.1016/j.egypro.2015.12.228.

H. Sadighi Dizaji, E.J. Hu, L. Chen, A comprehensive review of the Maisotsenko-cycle based air conditioning systems, Energy 156 (2018) 725–749. https://doi.org/10.1016/j.energy.2018.05.086.

M.H. Mahmood, M. Sultan, T. Miyazaki, S. Koyama, V.S. Maisotsenko, Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling, Renewable and Sustainable Energy Reviews 66 (2016) 537–555. https://doi.org/10.1016/j.rser.2016.08.022.

Z. Duan, X. Zhao, J. Liu, Q. Zhang, Dynamic simulation of a hybrid dew point evaporative cooler and vapour compression refrigerated system for a building using EnergyPlus, Journal of Building Engineering 21 (2019) 287–301. https://doi.org/10.1016/j.jobe.2018.10.028.

M.J. Romero-Lara, F. Comino, M. Ruiz de Adana, Experimental assessment of the energy performance of a renewable air-cooling unit based on a dew-point indirect evaporative cooler and a desiccant wheel, Energy Convers Manag 310 (2024). https://doi.org/10.1016/j.enconman.2024.118486.

F. Comino, S. Milani, S. De Antonellis, C.M. Joppolo, M. Ruiz de Adana, Simplified performance correlation of an indirect evaporative cooling system: development and validation, International Journal of Refrigeration 88 (2018) 307–317. https://doi.org/10.1016/j.ijrefrig.2018.02.002.

A. Ahmad, S. Rehman, L.M. Al-Hadhrami, Performance evaluation of an indirect evaporative cooler under controlled environmental conditions, Energy Build 62 (2013) 278–285. https://doi.org/10.1016/j.enbuild.2013.03.013.

S. De Antonellis, C.M. Joppolo, P. Liberati, S. Milani, L. Molinaroli, Experimental analysis of a cross flow indirect evaporative cooling system, Energy Build 121 (2016) 130–138. https://doi.org/10.1016/j.enbuild.2016.03.076.

A. Tejero-González, M. Andrés-Chicote, E. Velasco-Gómez, F.J. Rey-Martínez, Influence of constructive parameters on the performance of two indirect evaporative cooler prototypes, Appl Therm Eng 51 (2013) 1017–1025. https://doi.org/10.1016/j.applthermaleng.2012.10.054.

S.J. Oh, M.W. Shahzad, M. Burhan, W. Chun, C. Kian Jon, M. KumJa, K.C. Ng, Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling, Energy 168 (2019) 505–515. https://doi.org/10.1016/j.energy.2018.11.077.

H. Yang, W. Shi, Y. Chen, Y. Min, Research development of indirect evaporative cooling technology: An updated review, Renewable and Sustainable Energy Reviews 145 (2021). https://doi.org/10.1016/j.rser.2021.111082.

F.J.R. Martínez, E.V. Gómez, R.H. Martín, J.M. Gutiérrez, F.V. Diez, Comparative study of two different evaporative systems: An indirect evaporative cooler and a semi-indirect ceramic evaporative cooler, in: Energy Build, 2004: pp. 696–708. https://doi.org/10.1016/j.enbuild.2003.10.010.

X. Cui, C. Yang, W. Yan, L. Zhang, Y. Wan, K.J. Chua, Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler, Energy 278 (2023). https://doi.org/10.1016/j.energy.2023.128014.

Descargas

Publicado

2024-10-22